Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Frontiers in pharmacology ; 14, 2023.
Article in English | EuropePMC | ID: covidwho-2254930

ABSTRACT

The SARS-CoV-2 pandemic requires a new therapeutic target for viral infection, and papain-like protease (Plpro) has been suggested as a druggable target. This in-vitro study was conducted to examine the drug metabolism of the GRL0617 and HY-17542, Plpro inhibitors. Metabolism of these inhibitors was studied to predict the pharmacokinetics in human liver microsomes. The hepatic cytochrome P450 (CYP) isoforms responsible for their metabolism were identified using recombinant enzymes. The drug–drug interaction potential mediated by cytochrome P450 inhibition was estimated. In human liver microsomes, the Plpro inhibitors had phase I and phase I + II metabolism with half-lives of 26.35 and 29.53 min, respectively. Hydroxylation (M1) and desaturation (-H2, M3) of the para-amino toluene side chain were the predominant reactions mediated with CYP3A4 and CYP3A5. CYP2D6 is responsible for the hydroxylation of the naphthalene side ring. GRL0617 inhibits major drug-metabolizing enzymes, including CYP2C9 and CYP3A4. HY-17542 is structural analog of GRL0617 and it is metabolized to GRL0617 through non-cytochrome P450 reactions in human liver microsomes without NADPH. Like GRL0617 and HY-17542 undergoes additional hepatic metabolism. The in-vitro hepatic metabolism of the Plpro inhibitors featured short half-lives;preclinical metabolism studies are needed to determine therapeutic doses for these inhibitors.

2.
Front Pharmacol ; 14: 1067408, 2023.
Article in English | MEDLINE | ID: covidwho-2254931

ABSTRACT

The SARS-CoV-2 pandemic requires a new therapeutic target for viral infection, and papain-like protease (Plpro) has been suggested as a druggable target. This in-vitro study was conducted to examine the drug metabolism of the GRL0617 and HY-17542, Plpro inhibitors. Metabolism of these inhibitors was studied to predict the pharmacokinetics in human liver microsomes. The hepatic cytochrome P450 (CYP) isoforms responsible for their metabolism were identified using recombinant enzymes. The drug-drug interaction potential mediated by cytochrome P450 inhibition was estimated. In human liver microsomes, the Plpro inhibitors had phase I and phase I + II metabolism with half-lives of 26.35 and 29.53 min, respectively. Hydroxylation (M1) and desaturation (-H2, M3) of the para-amino toluene side chain were the predominant reactions mediated with CYP3A4 and CYP3A5. CYP2D6 is responsible for the hydroxylation of the naphthalene side ring. GRL0617 inhibits major drug-metabolizing enzymes, including CYP2C9 and CYP3A4. HY-17542 is structural analog of GRL0617 and it is metabolized to GRL0617 through non-cytochrome P450 reactions in human liver microsomes without NADPH. Like GRL0617 and HY-17542 undergoes additional hepatic metabolism. The in-vitro hepatic metabolism of the Plpro inhibitors featured short half-lives; preclinical metabolism studies are needed to determine therapeutic doses for these inhibitors.

3.
Acta Med Indones ; 52(3): 297-298, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-833672

ABSTRACT

Coronavirus Disease 2019 (COVID-19) symptoms are highly various in each patient. CXR are routinely used to monitor the disease progression. However, it is not known whether chest X-Ray (CXR) is a good modality to assess COVID-19 pneumonia.Male, 55 years-old, with pneumonia caused by COVID-19. Discordance was found between patient's clinical status and CXR lesion. On the 7th day of symptoms, patient was clinically well despite severe lesion shown on CXR. On the following day, patient clinically deteriorated despite the improvement on CXR lesion.Improvement of CXR does not always correlate well with patient's clinical status. Clinician have to be careful when using CXR to monitor patient with COVID-19 pneumonia.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Disease Transmission, Infectious , Pneumonia, Viral/diagnosis , Radiography, Thoracic/methods , Asymptomatic Diseases , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , SARS-CoV-2
6.
Intern Emerg Med ; 15(5): 801-812, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-378214

ABSTRACT

Of huge importance now is to provide a fast, cost-effective, safe, and immediately available pharmaceutical solution to curb the rapid global spread of SARS-CoV-2. Recent publications on SARS-CoV-2 have brought attention to the possible benefit of chloroquine in the treatment of patients infected by SARS-CoV-2. Whether chloroquine can treat SARS-CoV-2 alone and also work as a prophylactic is doubtful. An effective prophylactic medication to prevent viral entry has to contain, at least, either a protease inhibitor or a competitive virus ACE2-binding inhibitor. Using bromhexine at a dosage that selectively inhibits TMPRSS2 and, in so doing, inhibits TMPRSS2-specific viral entry is likely to be effective against SARS-CoV-2. We propose the use of bromhexine as a prophylactic and treatment. We encourage the scientific community to assess bromhexine clinically as a prophylactic and curative treatment. If proven to be effective, this would allow a rapid, accessible, and cost-effective application worldwide.


Subject(s)
Bromhexine/therapeutic use , Coronavirus Infections/drug therapy , Expectorants/therapeutic use , Pneumonia, Viral/drug therapy , Serine Endopeptidases/drug effects , Betacoronavirus , COVID-19 , Humans , Pandemics , SARS-CoV-2 , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL